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A toy model: simpler to analyse

Poland and Scheraga (1966): A model for the denaturation of the
DNA molecule

Fix ω, then the partition function ZL(ω) of a molecule is given by

ZL(ω) =
∑

s∈SL, s1=sL=0

exp

(
−β

L∑
i=1

ωi1{si=0}

)
,

where β is the inverse temperature and SL is the set of possible pathes.
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A toy model: simpler to analyse

Suppose ωi, i ≥ 1 are i.i.d.. We will focus on the free energy

F(β) := lim
L→∞

log(ZL(ω))

L
.

The existence of the limit follows directly from the fact that for L > N,

ZL(ω) ≥
∑

s∈SL, s1=sL=0

1{sN=0, sN+1=0} exp

(
−β

L∑
i=1

ωi1{si=0}

)

=
∑

s∈SL, s1=sN=0, sN+1=sL=0

exp

(
−β

N∑
i=1

ωi1{si=0}

)
exp

(
−β

L−N∑
i=1

ωN+i1{sN+i=0}

)

=ZN(ω)ZL−N(θ
Nω).
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A toy model: simpler to analyse

The problem will become simple if we consider it on diamond lattices.

n = 0 n = 1 n = 2

Let L be the length of the n-th Diamond lattice, then L = 2n.

Let BL be the number of pathes with length L, then BL = 2L−1.
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A toy model: simpler to analyse

Derrida-Hakim-Vannimenus (1992) gave the relation between the par-
tition function Z2L of a system of size 2L and its two subsystems by

Z2L = Z(1)
L Z(2)

L +
1
2

B2L.

Noting that BL = 2L−1 and B2L = 22L−1, one has Z2L
B2L

=
Z(1)

L Z(2)
L

2B2
L

+ 1
2

Furthermore, we set Xn =
log(ZL/BL)

log(2) for L = 2n, then

2Xn+1 =
1
2

2X(1)
n +X(2)

n +
1
2
⇒ Xn+1 = G(X(1)

n + X(2)
n ).
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A toy model: simpler to analyse

So that we have a recursive system which satisfies

Xn+1 = G(X(1)
n + X(2)

n ), n ≥ 0,

where X(1)
n ,X(1)

n are independent copies of Xn and G(x) = x−1+ log(1+2−x)
log 2 .

Derrida and Retaux (2014) simplify the model again,

Xn+1 = G(X(1)
n + X(2)

n ) ≈ max{X(1)
n + X(2)

n − 1, 0}.
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A toy model: simpler to analyse

Definition: Begin with a random variable X0 ≥ 0, and recursively

Xn+1 = max{X(1)
n + X(2)

n − 1, 0}, n ≥ 0,

where X(1)
n ,X(2)

n are independent copies of Xn.

I Free energy: F∞ := lim
n→∞

↓ E(Xn)
2n = lim

n→∞
↑ E(Xn)−1

2n .

To study the phase transition, we parameterize the initial distribtuion:

P(X0 = 0) = 1− p, P(X0 = 2) = p.
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Phase transition of Derrida-Retaux model

Theorem (Collet-Eckmann-Glaser-Martin 1984): ∃Critical value pc,

F∞(p) = 0, p ≤ pc and F∞(p) > 0, p > pc.

For the initial distribution above, pc =
1
5 !
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Phase transition of Derrida-Retaux model

Part of Proof. Let Gn(s) = Ep(sXn). By Xn+1 = (X(1)
n + X(2)

n − 1)+,

Gn+1(s) =
1
s

Gn(s)2 +
s− 1

s
Gn(0)2.

I G′n+1(s) =
2
s G′n(s)Gn(s)− 1

s2 Gn(s)2 + 1
s2 Gn(0)2.

I 2G′n+1(2)− Gn+1(2) = Gn(2)[2G′n(2)− Gn(2)].

So, 2G′n(2)− Gn(2)


< 0, if 2G′0(2)− G0(2) < 0;
= 0, if 2G′0(2)− G0(2) = 0;
> 0, if 2G′0(2)− G0(2) > 0.

Solving the equation 2G′0(2)− G0(2) = 0 gives pc =
1
5 .

Open Problem: What is the critical value pc when X0 6∈ Z+?
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Some conjectures and our results

Fn(p) =
Ep(Xn)

2n and (logFn)
−2 → (logF∞)−2 ∝ (p− pc)

Conjecture (Derrida-Retaux 2014) :

F∞(p) = exp{− K + o(1)
(p− pc)1/2}, p ↓ pc.

I A transition of infinite order (Berezinskii-Kosterlitz-Thouless type)
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Some conjectures

Conjecture (Collet et al. 1984, Derrida-Retaux 2014): As n→∞,

Ppc(Xn ≥ 1) ∼ 4
n2 .

C-Derrida-Hu-Lifshits-Shi 2019:

Ppc(Xn = k|Xn ≥ 1) ∼ 2−k

C-Dagard-Derrida-Shi 2020:

n2 · 2kPpc(Xn = k) ∼ 4 exp{−2k
n
}
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Some conjectures and our results

Theorem 1 (Chen-Dagard-Derrida-Hu-Lifshits-Shi, AOP 2021)

F∞(p) = exp{− 1
(p− pc)1/2+o(1)}, p ↓ pc.

Theorem 2 (Chen-Hu-Shi, PTRF 2022): When p = pc,

P(Xn 6= 0) =
1

n2+o(1) , E(Xn) =
1

n2+o(1) , n→∞.

Tool: A hierarchical representation of the Derrida-Retaux system
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X(v) = max{X(v(1)) + X(v(2))− 1, 0}

i.i.d ∼ X0

∼ X1→

X(en)
d
= Xn
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A hierarchical representation

Main tool: Open paths of a binary tree

a b
↘ ↙

(a + b− 1)+
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A path is open if along the path without taking the operation x→ x+.

Let Nn := # open paths until the n
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-th generation .

Main tool: Open paths of a binary tree

w

X(en) + w
�

�



Main tool: Open paths of a binary tree

Outline the proof of the theorem: F∞(p) = exp{−(p− pc)
−1/2+o(1)}.

The main difficulty is to obtain n0 := inf{n : Ep(Xn) > 1}, since

F∞(p) ≈
Ep(Xn0)

2n0
≈ e− ln 2·n0 .

Our idea is:

• In the nearly supercritical regime and n is not so large, to some sence

Ep(Xn) ≥ Epc(Xn) + Epc(Nn)(p− pc) ≈ Nn(p− pc).

• At the critical regime, Nn ≈ n2 conditionally on Nn ≥ 1.

So that we have n0 ≤ (p− pc)
−1/2+o(1) and obtain the lower bound.
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Main tool: Open paths of a binary tree

Other behaviours. As before, set Xn+1 = max{X(1)
n +X(2)

n − 1, 0}.

Fix α ∈ R. Let p ∈ (0, 1). Assume that X0 takes values in Z+ and

P(X0 = 0) = 1− p, P(X0 ≥ k) = pk−α2−k+1, k ≥ 1.

Then

P(there exists v ∈ Ten
0 which satisfies X(v) ≥ n) ≥ pn−α.
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Main tool: Open paths of a binary tree

Suppose now the system is at the critical regime.

If α > 4 then
Nn ≈ n2.

Indeed, a more general result holds when E(X3
02X0) <∞.

If α ∈ (2, 4], which is called the stable case, then

Nn ≈ nα−2.

See, Chen and Shi (2021).

If α = 2, then
pc = 0.

See, Collet-Eckmann-Glaser-Martin (1984).
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Main tool: Open paths of a binary tree

Theorem (Chen-Dagard-Derrida-Hu-Lifshits-Shi 2021): As p ↓ pc,

F∞(p) =



exp{−(p− pc)
− 1

2+o(1)}, α > 4;

exp{−(p− pc)
− 1

α−2+o(1)}, α ∈ (2, 4];

exp{−e−(C+o(1))/(p−pc)}, α = 2.

Theorem (Hu and Shi 2018): If α < 2 then

F∞(p) = exp{− 1

(p− pc)
1

2−α
+o(1)
}, p ↓ pc = 0.
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Further Research

Conjecture: Derrida and Shi (2020)

Let x > 0 and {Xn} be the critical Derrida-Retaux system with
suitable integrable condition. Then conditionally on {Xn = [xn]}, Nn

n2

converges in law as n→∞.

[1] Derrida and Shi (2020)
[2] Hu, Mallein and Pain (CMP 2020)
[3] Chen, Dagard, Derrida and Shi (JPA 2020)
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