The Derrida–Retaux conjecture for recursive models

Xinxing Chen (Shanghai Jiaotong University)

joint work with Victor Dagard, Bernard Derrida, Yueyun Hu, Mikhail Lifshits and Zhan Shi

November 25, 2022

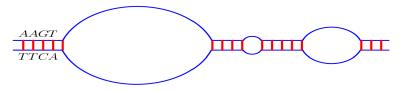
17th Workshop on Markov Processes and Related Topics

Xinxing Chen (SJTU)

The Derrida-Retaux conjecture for recursive m

- A toy model: simpler to analyse
- Phase transition of Derrida-Retaux model
- Some conjectures and our results
- Main tool: Open paths of a binary tree

Poland and Scheraga (1966): A model for the denaturation of the DNA molecule



Fix ω , then the partition function $Z_L(\omega)$ of a molecule is given by

$$Z_L(\omega) = \sum_{s \in \mathcal{S}_L, \ s_1 = s_L = 0} \exp\left(-\beta \sum_{i=1}^L \omega_i \mathbb{1}_{\{s_i = 0\}}\right),$$

where β is the inverse temperature and S_L is the set of possible pathes.

A toy model: simpler to analyse

Suppose $\omega_i, i \ge 1$ are i.i.d.. We will focus on the free energy

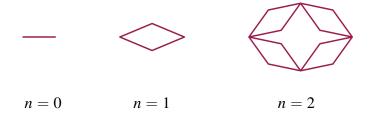
$$F(\beta) := \lim_{L \to \infty} \frac{\log(Z_L(\omega))}{L}.$$

The existence of the limit follows directly from the fact that for L > N,

$$Z_{L}(\omega) \geq \sum_{s \in S_{L}, s_{1}=s_{L}=0} 1_{\{s_{N}=0, s_{N+1}=0\}} \exp\left(-\beta \sum_{i=1}^{L} \omega_{i} 1_{\{s_{i}=0\}}\right)$$
$$= \sum_{s \in S_{L}, s_{1}=s_{N}=0, s_{N+1}=s_{L}=0} \exp\left(-\beta \sum_{i=1}^{N} \omega_{i} 1_{\{s_{i}=0\}}\right) \exp\left(-\beta \sum_{i=1}^{L-N} \omega_{N+i} 1_{\{s_{N+i}=0\}}\right)$$

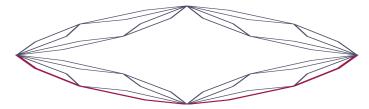
$$= Z_N(\omega) Z_{L-N}(\theta^N \omega).$$

The problem will become simple if we consider it on diamond lattices.



Let *L* be the length of the *n*-th Diamond lattice, then $L = 2^n$. Let B_L be the number of pathes with length *L*, then $B_L = 2^{L-1}$.

A toy model: simpler to analyse



Derrida-Hakim-Vannimenus (1992) gave the relation between the partition function Z_{2L} of a system of size 2L and its two subsystems by

$$Z_{2L} = Z_L^{(1)} Z_L^{(2)} + \frac{1}{2} B_{2L}$$

Noting that $B_L = 2^{L-1}$ and $B_{2L} = 2^{2L-1}$, one has $\frac{Z_{2L}}{B_{2L}} = \frac{Z_L^{(1)} Z_L^{(2)}}{2B_L^2} + \frac{1}{2}$

Furthermore, we set $X_n = \frac{\log(Z_L/B_L)}{\log(2)}$ for $L = 2^n$, then

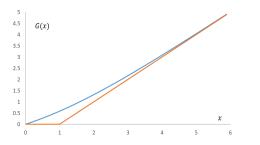
$$2^{X_{n+1}} = \frac{1}{2} 2^{X_n^{(1)} + X_n^{(2)}} + \frac{1}{2} \quad \Rightarrow \quad X_{n+1} = \mathcal{G}(X_n^{(1)} + X_n^{(2)}).$$

A toy model: simpler to analyse

So that we have a recursive system which satisfies

$$X_{n+1} = \mathcal{G}(X_n^{(1)} + X_n^{(2)}), \ n \ge 0,$$

where $X_n^{(1)}$, $X_n^{(1)}$ are independent copies of X_n and $\mathcal{G}(x) = x - 1 + \frac{\log(1+2^{-x})}{\log 2}$.



Derrida and Retaux (2014) simplify the model again,

$$X_{n+1} = \mathcal{G}(X_n^{(1)} + X_n^{(2)}) \approx \max\{X_n^{(1)} + X_n^{(2)} - 1, 0\}.$$

Definition: Begin with a random variable $X_0 \ge 0$, and recursively

$$X_{n+1} = \max\{X_n^{(1)} + X_n^{(2)} - 1, 0\}, \quad n \ge 0,$$

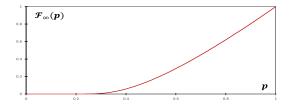
where $X_n^{(1)}, X_n^{(2)}$ are independent copies of X_n .

Free energy:
$$\mathcal{F}_{\infty} := \lim_{n \to \infty} \downarrow \frac{\mathbf{E}(X_n)}{2^n} = \lim_{n \to \infty} \uparrow \frac{\mathbf{E}(X_n) - 1}{2^n}.$$

To study the phase transition, we parameterize the initial distribuion:

$$\mathbf{P}(X_0 = 0) = 1 - p, \qquad \mathbf{P}(X_0 = 2) = p.$$

Phase transition of Derrida-Retaux model



Theorem (Collet-Eckmann-Glaser-Martin 1984): \exists Critical value p_c ,

 $\mathcal{F}_\infty(p)=0, \quad p\leq p_c \quad ext{and} \quad \mathcal{F}_\infty(p)>0, \quad p>p_c.$

For the initial distribution above, $p_c = \frac{1}{5}!$

Phase transition of Derrida-Retaux model

Part of Proof. Let
$$G_n(s) = \mathbf{E}_p(s^{X_n})$$
. By $X_{n+1} = (X_n^{(1)} + X_n^{(2)} - 1)^+$,
 $G_{n+1}(s) = \frac{1}{s}G_n(s)^2 + \frac{s-1}{s}G_n(0)^2$.

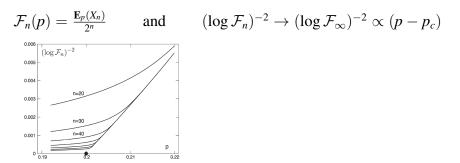
$$\mathbf{F}_{n+1}(s) = \frac{2}{s}G'_{n}(s)G_{n}(s) - \frac{1}{s^{2}}G_{n}(s)^{2} + \frac{1}{s^{2}}G_{n}(0)^{2}.$$

$$\mathbf{F}_{n+1}(2) - G_{n+1}(2) = G_{n}(2)[2G'_{n}(2) - G_{n}(2)].$$

$$\mathbf{F}_{n+1}(2) - G_{n}(2) = G_{n}(2)[2G'_{n}(2) - G_{n}(2)].$$

Solving the equation $2G'_0(2) - G_0(2) = 0$ gives $p_c = \frac{1}{5}$. Open Problem: What is the critical value p_c when $X_0 \notin \mathbb{Z}^+$?

Some conjectures and our results



Conjecture (Derrida-Retaux 2014) :

$$\mathcal{F}_\infty(p) = \exp\{-rac{K+o(1)}{(p-p_c)^{1/2}}\}, \quad p\downarrow p_c.$$

► A transition of infinite order (Berezinskii-Kosterlitz-Thouless type)

Conjecture (Collet et al. 1984, Derrida-Retaux 2014): As $n \to \infty$,

$$\mathbf{P}_{p_c}(X_n \ge 1) \sim \frac{4}{n^2}$$

C-Derrida-Hu-Lifshits-Shi 2019:

$$\mathbf{P}_{p_c}(X_n=k|X_n\geq 1)\sim 2^{-k}$$

C-Dagard-Derrida-Shi 2020:

$$n^2 \cdot 2^k \mathbf{P}_{p_c}(X_n = k) \sim 4 \exp\{-\frac{2k}{n}\}$$

Some conjectures and our results

Theorem 1 (Chen-Dagard-Derrida-Hu-Lifshits-Shi, AOP 2021)

$$\mathcal{F}_{\infty}(p) = \exp\{-rac{1}{(p-p_c)^{1/2+o(1)}}\}, \ p \downarrow p_c.$$

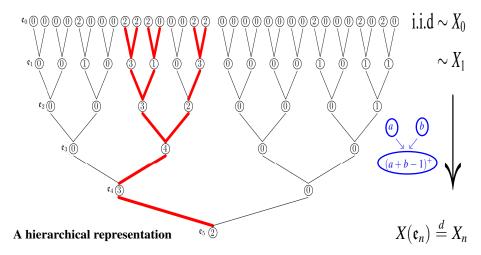
Theorem 2 (Chen-Hu-Shi, PTRF 2022): When $p = p_c$,

$$\mathbf{P}(X_n \neq 0) = \frac{1}{n^{2+o(1)}}, \quad \mathbf{E}(X_n) = \frac{1}{n^{2+o(1)}}, \quad n \to \infty.$$

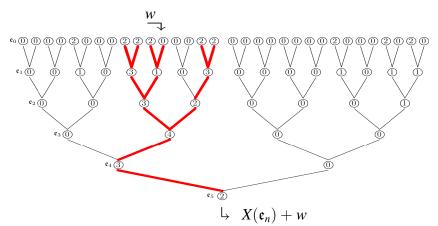
Tool: A hierarchical representation of the Derrida-Retaux system

Xinxing Chen (SJTU)

$$X(v) = \max\{X(v^{(1)}) + X(v^{(2)}) - 1, 0\}$$



A path is open if along the path without taking the operation $x \to x^+$.



Let $N_n := \#$ open paths until the *n*-th generation.

Xinxing Chen (SJTU)

Outline the proof of the theorem: $\mathscr{F}_{\infty}(p) = \exp\{-(p-p_c)^{-1/2+o(1)}\}.$

The main difficulty is to obtain $n_0 := \inf\{n : \mathbf{E}_p(X_n) > 1\}$, since

$$\mathcal{F}_\infty(p)pprox rac{\mathbf{E}_p(X_{n_0})}{2^{n_0}}pprox e^{-\ln 2\cdot n_0}.$$

Our idea is:

• In the nearly supercritical regime and n is not so large, to some sence

$$\mathbf{E}_p(X_n) \geq \mathbf{E}_{p_c}(X_n) + \mathbf{E}_{p_c}(N_n)(p - p_c) \approx N_n(p - p_c).$$

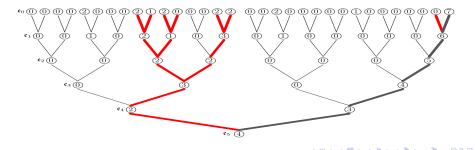
• At the critical regime, $N_n \approx n^2$ conditionally on $N_n \geq 1$.

So that we have $n_0 \leq (p - p_c)^{-1/2 + o(1)}$ and obtain the lower bound.

Other behaviours. As before, set $X_{n+1} = \max\{X_n^{(1)} + X_n^{(2)} - 1, 0\}$. Fix $\alpha \in R$. Let $p \in (0, 1)$. Assume that X_0 takes values in Z^+ and $\mathbf{P}(X_0 = 0) = 1 - p$, $\mathbf{P}(X_0 \ge k) = pk^{-\alpha}2^{-k+1}$, $k \ge 1$.

Then

P(there exists $v \in \mathbb{T}_0^{\mathfrak{e}_n}$ which satisfies $X(v) \ge n) \ge pn^{-\alpha}$.



Suppose now the system is at the critical regime.

• If $\alpha > 4$ then

$$N_n \approx n^2$$
.

Indeed, a more general result holds when $\mathbf{E}(X_0^3 2^{X_0}) < \infty$.

• If $\alpha \in (2, 4]$, which is called the stable case, then

$$N_n \approx n^{\alpha-2}.$$

See, Chen and Shi (2021).

• If $\alpha = 2$, then

$$p_{c} = 0.$$

See, Collet-Eckmann-Glaser-Martin (1984).

Theorem (Chen-Dagard-Derrida-Hu-Lifshits-Shi 2021): As $p \downarrow p_c$,

$$\mathcal{F}_{\infty}(p) = \begin{cases} \exp\{-(p-p_c)^{-\frac{1}{2}+o(1)}\}, & \alpha > 4; \\ \exp\{-(p-p_c)^{-\frac{1}{\alpha-2}+o(1)}\}, & \alpha \in (2,4]; \\ \exp\{-e^{-(C+o(1))/(p-p_c)}\}, & \alpha = 2. \end{cases}$$

Theorem (Hu and Shi 2018): If $\alpha < 2$ then

$$\mathcal{F}_{\infty}(p) = \exp\{-rac{1}{(p-p_c)^{rac{1}{2-lpha}+o(1)}}\}, \quad p\downarrow p_c = 0.$$

Conjecture: Derrida and Shi (2020)

Let x > 0 and $\{X_n\}$ be the critical Derrida-Retaux system with suitable integrable condition. Then conditionally on $\{X_n = [xn]\}, \frac{N_n}{n^2}$ converges in law as $n \to \infty$.

[1] Derrida and Shi (2020)
 [2] Hu, Mallein and Pain (CMP 2020)
 [3] Chen, Dagard, Derrida and Shi (JPA 2020)